

## EXAMINATIONS COUNCIL OF LESOTHO Lesotho General Certificate of Secondary Education

| CANDIDATE<br>NAME                                                    |                     |  |
|----------------------------------------------------------------------|---------------------|--|
| CENTRE<br>NUMBER                                                     | CANDIDATE<br>NUMBER |  |
| PHYSICAL SCIENCE  Paper 2  October/November 2018                     |                     |  |
| Candidates answer on the Question Paper.  1 hour 30 minute  Marks: 8 |                     |  |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

1







| 1 | (a) | An   | object is dropped from the top of a building. The height of the building is 4 m | high.                                 |     |
|---|-----|------|---------------------------------------------------------------------------------|---------------------------------------|-----|
|   |     | (i)  | State the force which pulls the object down.                                    |                                       |     |
|   |     |      |                                                                                 |                                       | [1] |
|   |     | (ii) | Calculate the average speed of the object if it took 3s to reach the ground.    | e e e e e e e e e e e e e e e e e e e |     |
|   |     |      | speed = distance/time                                                           | ×                                     |     |
|   |     |      | average speed =                                                                 |                                       | [2] |
|   | (b) | Fig  | . 1.1 shows a bicycle pedal which rotates the rear wheel during cycling.        |                                       |     |

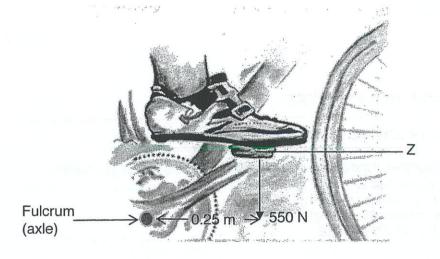



Fig. 1.1

A vertical force F, of,  $55\,N$  acts downwards on the pedal at Z. This causes it to rotate. The distance between Z and the axle is  $0.25\,m$ .

| (i) | Define the moment of a force. |
|-----|-------------------------------|
|     |                               |
|     |                               |
|     |                               |
|     | [2]                           |



(ii) Calculate the moment of F about the axis of the pedal.

moment = ..... Nm [2]

[Total: 7]

公司を

2 Figure 2.1 shows a set-up to heat water in a metal bucket using an immersion heater. Thermometers A and B are inserted at different levels into the bucket. They record the same temperature before the heater is switched on.

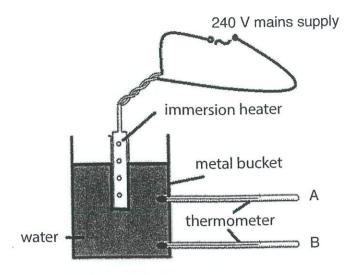



Fig. 2.1

| (a) | Des   | cribe how the thermal energy (heat) loss from the bucket can be reduced.                   |     |
|-----|-------|--------------------------------------------------------------------------------------------|-----|
|     |       |                                                                                            | _   |
| (b) |       | immersion heater is switched on. After a while, the readings on the thermometers are rent. |     |
|     | (i)   | State, with a reason, which thermometer is at a higher temperature.                        |     |
|     |       | [                                                                                          |     |
|     | (ii)  | Identify the method of heat transfer involved in heating the water.                        | 1]  |
|     | (iii) | Explain, why the temperature in A is greater than in B.                                    | '1  |
|     |       |                                                                                            |     |
|     |       |                                                                                            |     |
|     |       |                                                                                            | [3] |

\*)

- (c) The heater is connected to a 240 V mains supply to heat the water. An ammeter is connected into the circuit to measure current in the heater.
  - (i) On Fig. 2.2, complete the circuit to show how an ammeter is connected

Power supply

0~0

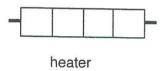



Fig. 2.2

[2]

(ii) Calculate the resistance of the heater when the current is 2.0A.

Use V = IR.

resistance:  $\Omega$  [2]

[Total: 10]

**3** (a) Fig. 3.1 shows a ray of light striking a glass block at an angle of 25°. The refractive index, n, of glass is 1.5.

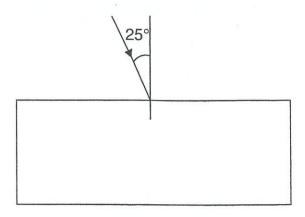



Fig. 3.1

(i) Calculate the angle of refraction, r in the glass block.

Use  $n = \sin i / \sin r$ 

|     |                                                                 | [2] |
|-----|-----------------------------------------------------------------|-----|
|     | (ii) On Fig. 3.1, draw the refracted ray in the glass block.    | [2] |
| (b) | Light is a wave.                                                |     |
|     | State one other wave that travels at the speed of light in air. |     |
|     |                                                                 | [1] |



- (a) The frequency of a tuning fork is 600 Hz.
  - (i) Calculate the wavelength of the sound waves in centimetres. (Use speed of sound in air as 330 m/s).

Use  $v = f\lambda$ 

|      | wave length = m [2]                               |
|------|---------------------------------------------------|
| (ii) | The man beats the drum quietly, then more loudly. |
|      | Describe the change to the sound wave produced.   |
|      |                                                   |
|      | [1]                                               |
|      | [Total: 8]                                        |

| 4 | (0) | Plastic rod is rubbed with a woollen cloth. The rod becomes positively charged.                                           |
|---|-----|---------------------------------------------------------------------------------------------------------------------------|
| + | (a) | Plastic rod is rubbed with a woollen cloth. The rod becomes positively ordined.                                           |
|   |     | Explain how rubbing makes the rod positively charged.                                                                     |
|   |     |                                                                                                                           |
|   |     |                                                                                                                           |
|   |     |                                                                                                                           |
|   |     | [2]                                                                                                                       |
|   | (b) | Fig. 4.1 shows the positively charged rod placed near to a metal cap of an electroscope. The electroscope leaf deflected. |
|   |     | + + +                                                                                                                     |
|   |     |                                                                                                                           |

Fig. 4.1

| (i)  | On Fig. 4.1 draw the distribution of charges on the metal cap and on the leaf. | [2] |
|------|--------------------------------------------------------------------------------|-----|
| (ii) | Explain why the leaf deflected.                                                |     |
|      |                                                                                |     |
|      |                                                                                |     |
|      |                                                                                |     |
|      |                                                                                | [2] |
|      | ***************************************                                        |     |



(c) Fig. 4.2 shows an 11 W fluorescent bulb supplied with 240 V.



Fig. 4.2

| (i)   | Explain why fluorescent bulbs are preferred to filament bulbs.      |
|-------|---------------------------------------------------------------------|
|       |                                                                     |
|       | [1]                                                                 |
| (ii)  | State the energy change that takes place in the bulb.               |
|       |                                                                     |
|       | [2]                                                                 |
| (iii) | Calculate the current in the bulb when connected to a 240 V supply. |
|       | Use $P = IV$                                                        |
|       |                                                                     |

current = .....[2]

[Total: 11]

- 5 A sample of radioactive carbon-14 decays by emitting beta-particles.
  - (a) State the nature of a beta-particle.

| [4]     |
|---------|
| <br>[1] |

- (b) Name a material that may be used to protect people from beta radiation.
  - \_\_\_\_\_\_[1
- (c) Complete the decay equation for carbon-14.

$$^{14}_{6}C \longrightarrow ^{14}_{7} +_{-1}\beta$$

[2]

[Total: 4]

6 Fig. 6.1 shows plants grown in a transparent plastic house and fed with a nutrient solution.

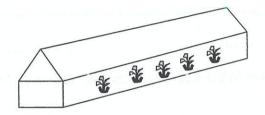



Fig. 6.1

- (a) The plants in Fig. 6.1 produce carbohydrates by photosynthesis.
  - (i) Name the form of energy required for this process.

.....[1]

(ii) The word equation for photosynthesis is given below.

State the type of reaction that describes photosynthesis.

(b) Table 6.1 shows the concentration of the ions in the nutrient solution used to feed the plants.

Table 6.1

| element    | ionic formula      | common source       |                       |
|------------|--------------------|---------------------|-----------------------|
| nitrogen   | NO                 |                     | concentration in mg/L |
|            | NO <sub>3</sub> -  | ammonium nitrate    | 200                   |
| phosphorus | PO <sub>4</sub> 3- | potassium phosphate |                       |
| potassium  | K+                 |                     | 40                    |
| Petacolani | IV.                | potassium hydroxide | 140                   |

| (i)  | The nutrient solution is always prepared just before the plants are fed as two of the common sources would react, leading to loss of one of the essential elements. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Identify the <b>two</b> common sources in table 6.1, and the element lost as they react.                                                                            |
|      | common sources                                                                                                                                                      |
|      | 1                                                                                                                                                                   |
|      | 2                                                                                                                                                                   |
|      | element [1]                                                                                                                                                         |
|      |                                                                                                                                                                     |
| (ii) | Draw a labelled diagram of apparatus that could be used to demonstrate that the nutrient solution conducts electricity.                                             |
|      |                                                                                                                                                                     |

[3]

[Total: 7]

**7** Fig. 7.1 shows how water from the well is treated for use at school.

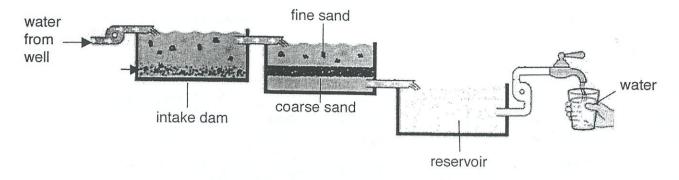



Fig. 7.1

| (a) | Suggest one reason why water should be treated before drinking.                              |
|-----|----------------------------------------------------------------------------------------------|
|     |                                                                                              |
| (b) |                                                                                              |
|     |                                                                                              |
|     |                                                                                              |
|     | (ii) Describe a physical test for pure water.                                                |
|     |                                                                                              |
|     |                                                                                              |
| (-) | [1]                                                                                          |
| (c) | Explain why some people prefer using rain water rather than water from the well for laundry. |
| (a) | [1]                                                                                          |
| (d) | State <b>one</b> way in which water can be conserved at schools.                             |
|     | [1]                                                                                          |
|     | [Total: 5]                                                                                   |



## BLANK PAGE

8 A student performed an experiment to investigate how a reaction rate changes as the reaction progresses.

Excess dilute hydrochloric acid was reacted with 8 g of zinc granules.

(a) Fig. 8.1 is an incomplete diagram that represents the apparatus used.

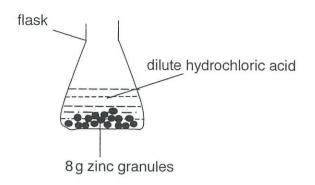



Fig. 8.1

| (i)   | Name the gas produced in this experiment.                                                 |          |
|-------|-------------------------------------------------------------------------------------------|----------|
| (ii)  | Describe the test and positive result for the result of the (a) (i)                       | 1]       |
| (ii)  | Describe the test and positive result for the gas named in (a) (i).  test                 |          |
|       |                                                                                           |          |
|       | positive result                                                                           | •••      |
|       |                                                                                           | 2]       |
| (iii) | Complete Fig. 8.1 to show how the gas produced could be collected and its volum measured. | ne<br>2] |



7 . S.

(b) Fig. 8.2 shows the sketch of the results obtained during the experiment.

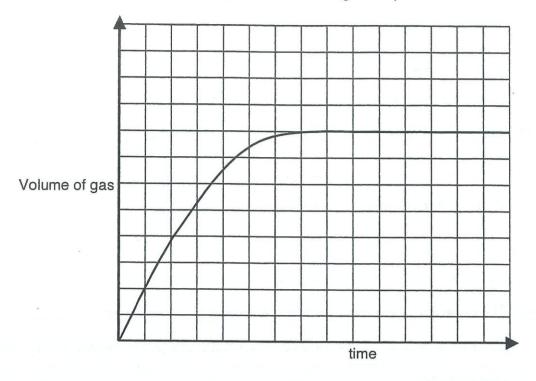



Fig. 8.2

| (i)   | Name another piece of apparatus required to give the results in Fig. 8.2.                                                                    |       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       |                                                                                                                                              | [1    |
| (ii)  | Use Fig. 8.2 to draw a conclusion from the investigation.                                                                                    |       |
|       |                                                                                                                                              |       |
|       |                                                                                                                                              | [1    |
| (iii) | In another experiment, the student used 4 g of the zinc granules. <b>All</b> other conditions were kept the same as in the first experiment. | ,     |
|       | On Fig. 8.2, sketch a graph of the results that would be obtained.                                                                           | [2    |
|       | ГТо                                                                                                                                          | al: 9 |

| ten | ne (Ca<br>npera | aO) is manufactured industrially by thermal decomposition of limestone (CaCO <sub>3</sub> ) in a high ture oven called a kiln. |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| (a) | Sta             | te <b>one</b> use of lime.                                                                                                     |
| (b) | Dec             | composition temperature in the kiln is around 1000°C.                                                                          |
| . , | (i)             |                                                                                                                                |
|     | (1)             | Using this information, suggest a gas that is likely to be released from the lime factory.                                     |
|     |                 | [1]                                                                                                                            |
|     | (ii)            | Describe the harmful effect of the gas stated in (b) (i).                                                                      |
|     |                 |                                                                                                                                |
|     |                 | [1]                                                                                                                            |
| (c) | (i)             | The products produced in the manufacturer of lime are oxides.                                                                  |
|     |                 | State the type of oxide that describes calcium oxide. Give a reason for your answer.                                           |
|     |                 | type of oxide[1]                                                                                                               |
|     |                 |                                                                                                                                |
|     |                 | reason                                                                                                                         |
|     | <b>411</b>      | [1]                                                                                                                            |
|     | (ii)            | Even at the higher temperature of the kiln, calcium oxide is still a solid but the product named in (b) (i) is a gas.          |
|     |                 | Explain this in terms of structure and bonding.                                                                                |
|     |                 |                                                                                                                                |
|     |                 |                                                                                                                                |
|     |                 |                                                                                                                                |
|     |                 |                                                                                                                                |
|     |                 |                                                                                                                                |
|     |                 | [3]                                                                                                                            |
|     | (iii)           | State the valency of calcium in lime.                                                                                          |
|     | ()              |                                                                                                                                |
|     |                 | [1]                                                                                                                            |



| (iv) | Calculate the relative formula mass of limestone (CaCO <sub>3</sub> ).  Show your working.  (A <sub>r</sub> : Ca; 40, C;12, O; 16) |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      | [2]                                                                                                                                |  |  |  |  |  |  |
| (v)  | Calculate the percentage composition, by mass, of lime in limestone.                                                               |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                    |  |  |  |  |  |  |
|      | [Total: 14]                                                                                                                        |  |  |  |  |  |  |

10 Table 10.1 shows the molecular formulae and relative molecular masses of hydrocarbons P, Q, R and S.

| compound | molecular formula             | relative molecular mass |  |  |
|----------|-------------------------------|-------------------------|--|--|
| Р        | $C_2H_4$                      | 28                      |  |  |
| Q        | C <sub>2</sub> H <sub>6</sub> | 30                      |  |  |
| R        | C <sub>3</sub> H <sub>6</sub> | 42                      |  |  |
| S        | C <sub>3</sub> H <sub>8</sub> | 44                      |  |  |

**Table 10.1** 

| (a) | Sor  | ne of the hydrocarbons in table 10.1 belong to the same homologous series.           |      |
|-----|------|--------------------------------------------------------------------------------------|------|
|     | (i)  | State two compounds that are in the same homologous series.                          |      |
|     |      | · · · · · · · · · · · · · · · · · · ·                                                | •••• |
|     |      |                                                                                      | [1]  |
|     | (ii) | Name the homologous series to which the compounds stated in (a) (i) belong.          |      |
|     |      |                                                                                      | [1]  |
| (b) | One  | e of the compounds in table 10.1 can be used to form a macromolecule called polythen | e.   |
|     | (i)  | State the compound in table 10.1 used to form polythene.                             |      |
|     | 2    |                                                                                      | [1]  |
|     | (ii) | Draw the graphical structural formula of the compound stated in (b) (i).             |      |

[2]

[Total: 5]

×2 . 21 .

## **BLANK PAGE**



| DATA SHEET | The Periodic Table of the Elements |
|------------|------------------------------------|
|            | •                                  |

13

| 0   | Heirum 2      | 20<br>Neon<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ar<br>Argen                   | 2 <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Krypton<br>36   | X Xenon Xenon 54                    | Rn Padon 86                        |                                       | 175<br>Lu                                             |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|------------------------------------|---------------------------------------|-------------------------------------------------------|
| II/ |               | 19 Fluorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.5<br><b>C1</b><br>Chlorine | ®<br>Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromine<br>35   | 127<br><b>T</b><br>lodine<br>53     | 210<br>At<br>Astatine<br>85        |                                       | 173<br><b>Yb</b>                                      |
| 5   |               | 16<br>Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32<br><b>S</b><br>Sultur      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Selenium<br>34  | 128 Tellurium 52                    | Po<br>Polonium<br>84               |                                       | T T                                                   |
| >   |               | Nirogen 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31<br>Phosphorus<br>15        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 1                                   | 209<br><b>Bi</b><br>Bismuth<br>83  |                                       | 167<br><b>Er</b>                                      |
| 2   |               | 12<br>Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silicon                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Sn<br>Tin<br>50                     | 207<br><b>Pb</b><br>Lead           |                                       | 165<br><b>H</b>                                       |
| Ξ   |               | 11<br>Boron<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | At<br>Aluminium               | 70<br><b>Ga</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gallium<br>31   | 115<br><b>In</b><br>Indium<br>49    | 204 <b>T 1</b> Thallium            |                                       | 162<br>Dy                                             |
|     | =             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zinc<br>30      | Cd<br>Cadmium<br>48                 | Hg<br>Mercury                      |                                       | 159<br><b>Tb</b>                                      |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | <sup>25</sup> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper<br>29    | 108<br><b>Ag</b><br>Silver<br>47    | 197<br><b>Au</b><br>Gold<br>79     |                                       | 157<br><b>Gd</b>                                      |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 89 <b>Z</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nickel<br>28    | 106<br>Pd<br>Palladium<br>46        | 195<br>Pt<br>Platinum<br>78        |                                       | - 152<br>Eu                                           |
|     |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | <sub>00</sub> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cobalt<br>27    | 103<br><b>Rh</b><br>Rhodium<br>45   | 192 <b>Ir</b> Iridium              |                                       | Sm S                                                  |
|     | T<br>Hydrogen |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56              | Ru<br>Ruthenium<br>44               | 190<br><b>Os</b><br>Osmium<br>76   |                                       | 147<br><b>Pm</b>                                      |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Mn S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manganese<br>25 | Tc<br>Technetium<br>43              | 186<br><b>Re</b><br>Rhenium<br>75  |                                       | ‡ <b>N</b>                                            |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184 <b>W</b> Tungsten 74           |                                       | 141<br><b>P</b>                                       |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 5 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vanadium<br>23  | 93<br>Nobium<br>41                  | 181 <b>Ta</b> Tantalum 73          |                                       | 5 <b>S</b> €                                          |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 48<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Titanium<br>22  | 91 Zirconium 40                     | 178 <b>Hf</b> Halnium 72           |                                       |                                                       |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scandium<br>21  | 89 <b>×</b>                         | Lanthanum 57                       | Actinium Actinium B9                  | d series<br>series                                    |
| =   |               | Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mg<br>Magnesium<br>12         | 40<br>Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calcium<br>20   | Strontium                           | 137 <b>Ba</b> Barium 56            | 226<br><b>Ra</b><br>Radium<br>88      | anthanoi<br>Actinoid                                  |
| -   |               | 7<br>Lithium<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Na<br>Sodium                  | 38<br><b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Potassium<br>19 | 85<br><b>Rb</b><br>Rubidium<br>37   | CS<br>Caesium<br>55                | 223<br>Fr<br>Francium<br>87           | * 58-71 Lanthanoid series<br>† 90-103 Actinoid series |
|     |               | 1 Hydrogen | II                            | III   IV   V   VII   VIII   III   III | II              | III                                 | 11   1   1   1   1   1   1   1   1 | 1   1   1   1   1   1   1   1   1   1 |                                                       |

175 Lu Lutetium Tm Thulium 167 Erbium 257 Fm S21 247 **BK** Berkelium Cm Curium 157 **Gd** 244 **Pu** Neptunium Pa Pa ± ₽ Cerium 232 Th

The volume of one mole of any gas is 24 dm<sup>8</sup> at room temperature and pressure (r.t.p.).

b = atomic (proton) number

a = relative atomic mass X = atomic symbol

Key



Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECoL) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.